ASSIGNMENT SET - I

Mathematics: Semester-II
M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-203

Paper: Algebra

1. Express the matrix $\left(\begin{array}{ccc}3 & 1 & -2 \\ -1 & 0 & 5 \\ -1 & -1 & 4\end{array}\right)$ in Jordon Canonical form.
2. For two matrices A and B show that $A B$ and $B A$ need not have the same minimal polynomial.
3. Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. (a) Suppose that $A^{2}=\mathrm{O}$. Prove that A is not invertible. (b) Suppose that $\mathrm{AB}=\mathrm{O}$ for some nonzero $\mathrm{n} \times \mathrm{n}$ matrix B. Could A be invertible? Explain.
4. Let V and W be finite-dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W
5. Let V be an inner product space, and let T be a linear operator on V . Then T is an orthogonal projection if and only if T has an adjoint T^{*} and $T^{2}=\mathrm{T}=T$. ${ }^{*}$
6. Define $T: P(R) \rightarrow P(R)$ by $T(f(x))=\int_{0}^{x} f(t)$ Prove that T linear and one-to-one, but not onto.
7. Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\mathrm{N}(\mathrm{T})=\mathrm{R}(\mathrm{T})$.
8. Let v be a finite dimensional vector space, and define $\psi: V \rightarrow V^{* *}$ by $\psi(x)=\bar{x}$ then prove that ψ is an isomorphism.
9. State and prove Sylvester's Law of Inertia on finite dimensional real vector space V .
10. Let T be the linear operator on $P_{2}(\mathbb{R})$ defined by $T(g(x))=$ $-g(x)-g^{\prime}(x)$ then find a Jordan Canonical form Of T and a Jordan canonical basis for T .
11.Find the Minimal polynomial of the matrix $\left(\begin{array}{ccc}3 & -1 & -0 \\ 0 & 2 & 0 \\ 1 & -1 & 2\end{array}\right)$
11. Define Bilinear form on vector space V over a field F
12. Find the Characteristic polynomial of the companion matrix
14.Give an example a complex symmetric matrices need not be normal
15.Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\mathrm{N}(\mathrm{T})=\mathrm{R}(\mathrm{T})$
13. Let V be the vector space of all polynomial function p into \mathbb{R} which have degree 2 or less.Define three functions on V given by $f_{1}(p)=$ $\int_{0}^{1} p(x) d x f_{2}(p)=\int_{0}^{2} p(x) d x, f_{3}(p)=\int_{0}^{-1} p(x) d x$ show that \{ $\left.f_{1}, f_{2} f_{3}\right\}$ is a basis of V^{*}
14. Show that every subspace of V is invariant under I and θ the identity and zero operators.
15. Show that two nilpotent matrices of order 3 are similar if and only if they have the same index of Nilpotency. Show by example that the statement is not true for nilpotent matrices of order 4.
16. Suppose A is a complex matrix with only real eigen values. Show that A is similar to a matrix with only real entries.
17. Suppose T is normal. Prove that
(a) T is self-adjoint if and only if its eigen values are real.
(b) T is unitary if and only if its eigen values have absolute value 1.
18. T is positive if and only if its eigen values are nonnegative real numbers.
19. Show that any operator T is the sum of a self-adjoint operator and a skew-adjoint operator.
20. Let \sim mean "is isomorphic to." Prove that \sim is an equivalence relation on the class of vector spaces over F.
21. what is generalized eigenvectors of a linear operator T ?
22. Let V and W be finite-dimensional vector spaces and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be an isomorphism. Let P be a subspace of V.
(a) Prove that $T(P)$ is a subspace of W.
(b) Prove that $\operatorname{dim}(P)=\operatorname{dim}(T(P))$
26.Let T be a linear operator on an n-dimensional space V. Then show that The Characteristic and minimal polynomial for T have the same root.
23. Let V and W be vector spaces, and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear and invertible. Then Show that $T^{-1}: \mathrm{W} \rightarrow \mathrm{V}$ is linear
28 .Let $\beta=\{(2,1),(3,1)\}$ be an ordered basis for \mathbb{R}^{2}.Find the dual basis of β for \mathbb{R}^{2}.
24. Prove that the sum of two bilinear forms is a bilinear form.
\qquad
